skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Cai-Zhuang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnetic materials are essential for energy generation and information devices, and they play an important role in advanced technologies and green energy economies. Currently, the most widely used magnets contain rare earth (RE) elements. An outstanding challenge of notable scientific interest is the discovery and synthesis of novel magnetic materials without RE elements that meet the performance and cost goals for advanced electromagnetic devices. Here, we report our discovery and synthesis of an RE-free magnetic compound, Fe 3 CoB 2 , through an efficient feedback framework by integrating machine learning (ML), an adaptive genetic algorithm, first-principles calculations, and experimental synthesis. Magnetic measurements show that Fe 3 CoB 2 exhibits a high magnetic anisotropy ( K 1 = 1.2 MJ/m 3 ) and saturation magnetic polarization ( J s = 1.39 T), which is suitable for RE-free permanent-magnet applications. Our ML-guided approach presents a promising paradigm for efficient materials design and discovery and can also be applied to the search for other functional materials. 
    more » « less
  2. null (Ed.)